
depth of the channel from the orifice. Secondly, here we encounter intense dissolution of 
the air trapped in the channel, and the rate at which this occurs substantially exceeds (in 
the case of water, by several orders of magnitude) the speed with which the solution is ac- 
complished in a cylindrical capillary. 

These results are important in the practice of capillary defectoscopy, pointing the 
way to finding optimum conditions for more complete and rapid filling of defects by means 
of tracer fluids. 

~ 

2. 

3. 
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NUMERICAL MODELING OF NONSTEADY NATURAL CONVECTION IN PRISMATIC CAVITIES 

Yu. E. Karyakin UDC 536.25 

A finite-difference method is described for the calculation of the two-dimen- 
sional nonsteady natural convection in arbitrary areas. This method is used 
to investigate convection in a cavity of trapezoidal cross section. 

One of the fundamental questions that arises in the numerical modeling of the processes 
of natural convection in cavities of arbitrary configuration is the choice of the coordinate 
system. The utilization of a rectangular Cartesian system involves certain difficulties in 
the formulation of the boundary conditions at irregular grid nodes and leads to a loss of 
accuracy in the solution. In a number of cases, it is possible to introduce mixed systems 
(rectangular Cartesian systems in rectilinear segments, and polar systems in those segments 
formed by circles, etc.). It is obvious that not every configuration of this region lends 
itself to this approach; moreover, difficulties arise in joining the solutions at the boun- 

daries of the subregions. 

The most effective coordinate system is the one in which the boundaries of the region 
being studied coincide with the coordinate lines. In the general case, this system will be 
curvilinear and nonorthogonal. It is precisely systems such as these that are examined in 

this paper. 

Convection in prismatic cavities of nonrectangular lateral cross section has been in- 
vestigated in [1-5]. The two-dimensional natural convection in a cavity whose lateral cross 
section is in the form of a parallelogram is examined in [I]. The vertical walls are as- 
sumed to be isothermal (hot and cold), and either a linear distribution of temperature or 
a condition of thermal insulation is specified for the remaining two parallel walls. The 
calculation results are compared with experimental data. The same authors, in [2], solved 
the problem in a conjugate formulation. 

Convection in a trapezoidal region formed by the arcs of concentric circles and radial 
straight lines is examined in [3]. In [4], the authors investigate the problem experimental- 
ly. Finally, convection is modeled in [5] in a trapezoidal cavity with thermally insulated 
bases and walls that are isothermally inclined at an angle of 45 ~ to the base. The numerical 
solution of the problem is found by utilizing variable stream functions, i.e., vorticity in 
a range of 102 ~ Ra ~ l0 s for various orientations of the cavity relative to the vector of 

the force of gravity. 
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Fig. i. The convection region. 

Let us examine a prismatic cavity of rather great extent, whose lateral cross section 
is a quadrangle ABCD with arbitrary curvilinear boundaries (Fig. i). The equations of the 
two-dimensional nonsteady natural convection in the Boussinesq approximation in the Cartesian 
coordinate system (Yl, Yi) have the form: 

o., + a_~_(...,)=_ G,g~! o Op + a (o . ,  ~, (:) 
o~-- o y .  g - oy---~. T ~ oy. j 

oo 1 o { oo 
o--T + (u~O) = pr oy~ ~-~yk] (2) 

Ouh = 0 ,  i =  1, 2; k = l ,  2. (3 )  
Oyu 

The twice-repeated subscripts here and below denote summation from i to 2. 

Equations (1)-(3) have been written in dimensionless form. We have chosen some charac- 
teristic length L as the linear scale, and for the time scale we have taken the diffusion 
time t o = Li/v, the velocity scale is u 0 = L/t 0 = v/L, and the pressure scale is the doubled 
dynamic thrust pu0 2 = pvi/L 2. In this case, the Prandtl number Pr = pVcp/X, and the Grashof 
number Gr = Bg(T z - Ti)L3/~ 2, where T I and T 2 are characteristic values of temperature. 

Let us introduce a curvilinear nonorthogonal system of coordinates x I = xZ(yz, Yi), x2 = 
xi(Yl, Yi), representing the region of flow ABCD (Fig. I) under consideration per square unit 
(0 ~ x I 5 i, 0 5 x 2 5 i). In this system the tensor form of notation [6] corresponds to Eqs. 
(1)-(3): 

Ovi +Vh(VkVO = - - G r  g l , , . .O- -v iP- l -g~ lvh(VzVi ) '  (4 )  
Ot g 

O0 k Vk (V kO) = 1 0--5-- -P-;-r g~'v~ (v,O), (5) 

gklVhVl = O. ( 6 )  

Let us present Eqs. (4)-(6) in a form which contains no tensor derivatives. For this 
we will use the familiar tensor-analysis formulas [6]: 

Ox i Ox ~ _ v~ O!tl 
v~ = u~, Og~. , d = u~ ui = v~ - -  ( 7 )  

Ox' ~ '  Ogi Ox ~ 

With u t i l i z a t i o n  o f  (7 )  we can t r a n s f o r m  a l l  o f  t h e  t e n s o r  d e r i v a t i v e s  in  ( 4 ) - ( 6 ) .  For  
example ,  t h e  d e r i v a t i v e  7kV s i s  t r a n s f o r m e d  in  t h e  manner o f  t h e  t w i c e - c o v a r i a n t  r a n k - I I  
tensor, i.e., 

VkV~-- Ou= Oy~ O y ~ _  Ou~ 0 9 ~ _  Ov___L ' 
Oy~ Ox k Ox ~ . Oxh Ox l Ox k 

where the symbol (^) denotes the quantities calculated on the basis of the Cartesian velocity- 
vector components with the aid of the derivative matrix 8y~/Sx s fixed at the differentiation 
point Q: 

~z = u~ (OyJOx% = vkOxk/Oy~ (OyJOx~)Q . 
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Fig. 2. Streamlines (a) and isotherms (b) in a trapezoidal 
cavity; Gr = 7.4.105 , ~ = 45~ dashed lines) t = 9.4"10-4; 
solid lines) steady-state regime. 

Fig. 3. The function ~max(t) (the solid and dash-dot curves) 
and N-u(t) (dashed curves) for a trapezoidal cavity, ~ = 45~ 
i) Gr = 7.4.103; 2) 7.4"104; 3) 7.4"105; ~ = 15~ 4) Gr = 104; 
5 )  lO s . 

Fig. 4. The effect exerted by the angle of inclination of the 
side wall of the trapezoidal cavity on the function Nu(Gr): i) 

= 0; 2) 15; 3) 30; 4) 45~ the points identify the data from 
[5] for ~ = 45 ~ . 

As a consequence of such transformations the system of equations (4)-(6) is reduced to 
the following form [7-9]: 

a~%0 g' 0 ap a -~, a;, I av~ 4_ - Gr - - - - H - - - ( g  ~ } ,  (8 )  
at ax ~ g ax~ axk 

ao a (~,~'o) l a (~,J:t _ _ - -  _ _  O0 '~, 

a i  + ax~ pr a~ '~ -~-7~,: (9)  

gaZ a-Jr ( i o )  
Ox------T :-- O, i, k, l :  1, 2, 
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where 

t, Oy~ /Q k Oy~ /e Oy~ 

The system of equations (8)-(i0) describes the nonsteady natural convection in an arbitrary 
two-dimensional region ABCD (Fig. i) and must be enhanced with the appropriate conditions 
for all the solid boundaries: adhesion and impermeability for the I-st or ll-nd kind of 
velocity-vector components with temperature 8. 

Since the pressure p in the solution of the problem in physical variables is determined 
with accuracy to the additive constant, we make use of the additional condition: p = 0 at 
the point x I = x 2 = 0. No other pressure-related boundary conditions are imposed. 

For purposes of constructing the difference scheme, in the integration region (0 ~ x I 
i, 0 ~ x 2 g i) we will employ the nonuniform grid x I = Xn z (n = i, 2 ..... N + I), x 2 = 
Xm 2 (m = i, 2, ..., M + i). Let us introduce variable intervals along the coordinates x l 
and x 2 with exponential constrictions near the solid boundaries. For this purpose we will 
consider the auxiliary variable q which, in this grid, has a constant interval Aq which is 
associated, for example, with the coordinate x I by the relationship 

1 1 = + [ 1 _  F ln(l  + d~x~) - ln(1 + d,(1--x~)) ] 
In (1 -{- dl) In (1 --[- d2) ' 

where 0 <_ rl <- i. In the calculations it was generally assumed that d I = d z = i0. 

Let us determine the unknown grid functions p and e at the center of each grid cell, 
and let us also determine the functions v~ and v 2 at the center of its boundaries, as this 
is done in the marker and cell method [i0]. We will use D k to denote the approximation of 
the derivative 8/~x k with respect to the adjacent nodes. The convection terms in Eqs. (8) 
and (9) will be approximated in accordance with the donor cell scheme [i0], denoting the dif- 
ference analog of the derivative ~(vk~)/~xk by Dk*(vk, ~), where ~ = vi, 0. 

We will use the following multiple-interval semiimplicit difference scheme [9] to solve 
system of equations (8)-(10) (the superscript n identifies the number of the time layer): 

8 v , / A t  "-F D: (v  ~", v']) = - -  Grgig-~0" - -  D, (pn) _}_ Oh (gk'Dz (V~')), (11) 

where 

ghtDh (V'/ H- 6V,-  At .giDj (6p)) = O, 

v'/+1 = v'/ + 6v~- At.D~ (6p), 

60/At + D*k (v h ~+', On) = Pr -~. Dh (g~ZDz (0")), 

0.+~ = O" + 80, p"+~ = p~ + 8p, 

(12) 

( 1 3 )  

(14) 

(15) 

The procedure for the realization of the difference scheme (ii)-(15) is as follows. 
From the known values of the grid functions vz n, v2n, pn and 8 n on the n-th time layer, by 
means of the explicit expressions (ii) we calculate the correction factors for the velocities 
~v I and ~v 2. Then; in conjunction with Eq. (12), on the basis of the implicit scheme, itera- 
tions are used to find the field of correction factors for the pressure 6p, subsequent to 
which, from expression (13), we determine the values of the grid functions vl n+1, v2 n+l on 
the new (n + l)-th time layer. Finally, on the basis of the explicit procedure (14) we cal- 
culate the field of correction factors for the temperature 6e, and from expressions (15), 
by means of simple recalculation, we find the sought grid functions 8 n+l and pn+1 on the 
(n + l)-th time layer. 

For the purpose of finding the field correction factors for the pressure 6p, a term with 
the derivative with respect to the relaxation time 8(6p)/ST is added to Eq. (12), which is 
then solved by a three-dimensional variable iteration decomposition scheme (s is the itera- 
tion number) [9]: 
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~+~/2/A ~ _  agUDjD~ (~+~m) - -g~Da (g~ D~ (6p~)) + gn'At-~Da (v? + 6v~ +~/~) = 0, (16) 

(~+1 __ ~s+1/2)/A~ __ ~g~D2D~ (~s+l) = 0, (17) 

6p '+' = 6p ~ + ~+~. ( 1 8 )  

Scheme ( 1 6 ) - ( 1 8 )  i s  r e a l i z e d  by s u c c e s s i v e  s c a l a r  sweeps a long  t h e  d i r e c t i o n s  o f  x z and 
x 2. To speed up the convergence of the iteration process, we use a set of relaxation-time 
intervals A~{AT0, A~l, ..., ATR}, which ensures uniform attenuation of the harmonic perturba- 
tion over the entire spectrum of eigenfrequencies in the problem [9]. Analysis of the model 
equation with constant coefficients shows that for an arbitrary curvilinear coordinate sys- 
tem the interval sequence can be ascertained with the following formulas: 

q ---- min (nAx~/4, ~Ax2/4)2/~, 

A% = rain [(Axl)2/(4ag~9, (hx2)Z/(4ag22)], 

A% = A~_l/q, r = l, 2 . . . . .  R. 

As was demonstrated by these calculations, in the first time layer the algorithm from 
(16)-(18) calls for the completion of approximately 20 iterations; however, the number of 
iterations for the following time layers rapidly diminishes to a minimum value s = R + i. 
It was generally assumed that R = 3-5. 

We note that system (16)-(18) requires no formulation of boundary conditions for pres- 
sure correction factors. The difference analogs of the differential operators near the boun- 
daries of the region are written so that only the boundary conditions for the velocity vec- 
tor and temperature vector components are used [Ii]. In setting the temperature conditions 
of the II-nd kind we should take into consideration that the derivative with respect to the 
normal to the coordinate line x ~ = const has the form 

08 I ~/~-1 ( 08 ~1 08 , O x  z ] = gl. + g  = - = , ,  ( 1 9 )  
On x'=const a xl 

w h i l e  w i t h  r e s p e c t  t o  t h e  normal  t o  t h e  l i n e  x 2 = c o n s t  

08 I 1 ( 08 2 2 0 8 " ,  
On x'=con, t-- ]/~r g ~ 2 _ _ +  t __~xZ ) " (20), 

E x p r e s s i o n s  (19)  and (20) s i m u l t a n e o u s l y  i n c l u d e  t h e  d e r i v a t i v e s  88/8x z and 80/8x 2. 
C o n s e q u e n t l y ,  a t  t h a t  boundary  where t h e  t e m p e r a t u r e  c o n d i t i o n  o f  t h e  I I - n d  k i n d  i s  g i v e n ,  
i t s  d i f f e r e n c e  ana log  can be r e a l i z e d  w i t h  u t i l i z a t i o n  o f  t h e  sweeping method a l o n g  t h i s  boun- 
d a r y .  

The a b o v e - d e s c r i b e d  a l g o r i t h m  was used  to  c a l c u l a t e  t h e  t w o - d i m e n s i o n a l  n o n s t e a d y  n a t u r a l  
c o n v e c t i o n  in  a p r i s m a t i c  c a v i t y  whose l a t e r a l  c r o s s  s e c t i o n  i s  an e q u i l a t e r a l  t r a p e z o i d  ( F i g .  
2) w i t h  a base  l e n g t h  L and h e i g h t  H. The s i d e s  form an a n g l e  ~ w i t h  t h e  v e r t i c a l .  

We will introduce the curvilinear coordinate system (x I, x 2) in the following fashion: 

x ~= Yl--y2tg~ , x ~= Y~ (21) 
L - - 2 y ~ t g ~  H 

Here ,  t h e  t r a p e z o i d a l  r e g i o n  of  mot ion  in  t h e  (Yz, Y2) c o o r d i n a t e  p l a n e  i s  t r a n s f o r m e d  to  
t h e  q u a d r a t i c  in  t h e  (x z, x 2) p l a n e ,  so t h a t  0 g x ~, x 2 ~ 1, w h i l e  t h e  b o u n d a r i e s  o f  t h e  r e g i o n  
c o i n c i d e  w i t h  t h e  c o o r d i n a t e  l i n e s  x ~ = c o n s t ,  x 2 = c o n s t .  

Using (21)  and t h e  r e c i p r o c a l  t r a n s f o r m a t i o n s  o f  t h e  c o o r d i n a t e s ,  we can e a s i l y  f i n d  
t h e  v a l u e s  o f  t h e  m a t r i x  e l e m e n t s  needed  f o r  t h e  c a l c u l a t i o n s  o f  t h e  d e r i v a t i v e s  8 y J S x  i and 
8xi/~ya (i, ~ = i, 2). 

We will assume that the upper and lower bases of the cavity have been thermally insula- 
ted, and that the side surfaces are isothermal: the left-hand side AD is the hot side, while 
the right-hand side BC is the cold side (Fig. 2), i.e., 

= = 0 ,  8 a o =  1, 8Bc=O. 
AB DC 
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In the solution of the nonsteady problem it is assumed that at the initial instant of 
time the liquid is nonmoving throughout the entire convection region and that its tempera- 

ture throughout is equal to 8init = 0.5. 

Systematic calculations were performed over a Grashof number range 102 ~ Gr g 106 for 
four values of the angle at which the side walls deviate from the vertical: @ = 0, 15, 30, 
and 45 ~ . It was assumed that L = i, H = L/3, and Pr = 0.7. 

Within the indicated range of parameters we have constructed time-developed streamline 
patterns, as well as those of the isotherms, and the maximum values of the stream function 
whose magnitude in the section x I = const is determined on the basis of the expression 

X s 

~b " [ "V g~/g  ~ (vlg n -~- o~g zl) dx z, 
0 

as well as the distributions of the Nusselt numbers at the side walls of the cavity: Nu = 
(88/8n) w. These results have been compared with the data from [5]. 

The solid lines in Fig. 3 show the change over time in the maximum value of the stream 
function in the cavity for the case in which ~ = 45 ~ and for three values of the Grashof 
number: 7.4"103 , 7.4"104 , and 7.4.10 s (with consideration of the difference in the choice 
of scales, this corresponds to Ra = l0 s , 104 , and l0 s from [5]), as well as the values of 
the average Nusselt number at the side wall of the cavity for these cases. 

With comparatively small Grashof numbers, Gr ~ 104 , the maximum value of the stream 
function, characterizing the intensity of convective motion, increases monotonically over 
time, attaining some limit. The values of the average Nu numbers are large at the beginning 
of the convection process because of the large temperature gradients near the walls; subse- 
quently, they diminish monotonically over time, tending to some limit. 

If Gr > 104 , the functions ~max(t) and ~(t) no longer exhibit a monotonic nature. At 
some instant of time the quantity ~max reaches a maximum, and then, diminishing, tends to 
a steady-state value. The nonmonotonic behavior of the functions ~max(t) and-~(t) is also 
characteristic of other types of cavities. Thus, an analogous phenomenon has been described 
in [12] for the case of a triangular cavity. 

The dash-dot lines in Fig. 3 are plots of the function ~max(t) for @ = 15 ~ and for two 
values of the Gr number: 104 and 10 s. As we can see, with a reduction in the angle ~ the 
intensity of the convection process Within the cavity diminishes. 

Figure 2 shows the development, over time, of the streamline patterns and those of the 
isotherms in the trapezoidal cavity. The dashed lines correspond to the initial stage of 
the convection, while the solid lines represent the steady-state regime. As follows from 
the figure, at the onset of the convection process, near the side walls, two circulation 
zones are formed and the direction of liquid rotation is clockwise. With the passage of 
time, these zones merge into a single circulation region. The isotherms in the central por- 
tion of the cavity assume a virtually horizontal position, corresponding to the conditions 
of liquid stratification. 

Figure 4 shows the change in Nu(Gr) for various values of the angle ~, representing the 
deviation of the side walls from the vertical. As we can see, as the angle ~ becomes larger, 
the intensity of the heat-exchange processes at the walls of the cavity increases noticeably. 

All the calculations have been carried out on a nonuniform grid 30 • 30. 

NOTATION 

Yl, Y2, Cartesian coordinates; x ~, x 2, curvilinear coordinates; ul, u2, Cartesian velo- 
city components; vl, v 2 and v I, v 2, covariant and contravariant velocity components; t, time; 
p, pressure; T, temperature; ~ = (T - T2)/(T l - T2) , the dimensionless temperature; gks the 
contravariant components of the metric tensor; g22, the twice-covariant component of the 
metric tensor; Vk, the symbol for the covariant derivative; v, the kinematic coefficient 
of viscosity; p, the density of the working fluid; ~, the coefficient of thermal conductivi- 
ty; ~, the thermal coefficient of volume expansion; Cp, the coefficient of heat capacity; q, 
an auxiliary variable; dl, d=, the parameters of grid-density; 6vi, 60, 6p, the correction 
factors for the sought values of the velocity, temperature, and pressure components; A~, the 
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relaxation-time interval; ~, the weight coefficient; H, the height of the cavity; L, the 
width of the cavity; e, the angle formed between the vertical and the side surface of the 
trapezoidal cavity; n, the coordinate of the orthogonal surface; ~, the stream function; 
Gr, the Grashof number; Pr, the Prandtl number; Nu, the Nusselt number; Ra, the Rayleigh 
number; g, the acceleration of free fall; gyi, the projection of g onto the Yi axis; gi, the 
covariant component of the vector g. 
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RELATIONSHIP BETWEEN THE COEFFICIENT OF MASS TRANSFER AND 

LOCAL EFFICIENCY FOR VAPOR (GAS)-LIQUID SYSTEMS 

Yu. A. Komissarov, V. v. Kafarov, and K. Amirov UDC 66.048.37 

Using typical mathematical vapor and liquid models, we demonstrate analytical- 
ly that the structure of the liquid flow in two-phase systems has no effect on 
the volumetric coefficient of mass transfer. 

As we calculate the number of contact devices in rectification and absorption columns, 
the process of mass transfer is described by equations linking the efficiency of the plate 
with the parameters of the vapor-liquid flow model [1-3]. The magnitude of the local effi- 
ciency included in these equations, in its physical sense, characterizes the kinetics of 
mass transfer and it is determined in various ways [4-8]. The local efficiency is deter- 
mined in [4, 5] from the equation which links this quantity with the number of transfer units, 
which, in its own turn, is calculated on the basis of a two-film mass-transfer model which 
involves the utilization of empirical relationships for the coefficients of mass transfer 
in the vapor and liquid phases. For purposes of calculating the local efficiency, the theo- 
retical and experimental liquid-concentration profiles are compared in [6] over the length 
of the plate during the mass-transfer process (adsorption), while regime and technological 
parameters for an operational rectification column are used in [7, 8]. The algorithm used 
to calculate the local efficiency makes provision for reducing to a minimum the meanTsquare 
error in the theoretical and experimental concentration profiles [6] or to find the optimum 
magnitudes of the local component efficiency in such a manner that the theoretical and actual 
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